真正的数据分析师都在做什么
数据分析在实际工作中的应用方方面面,小到Excel做表,大到数据化的决策指导。目前的形势,很少有公司有全面化的数据运营管理体系,导致有些从事数据分析的朋友觉得工作只局限于做图做表,为业务部门供数据。
1.用户模型图表建设
目的:解决业务问题
因为是电商行业,用户和产品是很重要的研究对象,流量和转化是很重要的指标,所以建立了各种用户模型、销售模型去挖掘用户属性,制定特定的营销策略。
2.数据报表体系建设
目的:提升效率
数据报表体系是任何企业最基本的数据管理/信息化管理内容,承担着收集、统计、整理和呈现数据的角色。
3.数据分析监控
目的:发现问题
数据分析监控主要是辅助内部和外部的一些管理,保障企业的整体运营。比如营销活动,这种难以量化但又占据较多开销的时间需要有力的数据分析去管控,最直接的就是计算投入产出比。
4.行业市场分析
目的:引导作用
这个行业的变化是极其快速的。最常用的是通过爬虫挖掘行业内其他竞品的数据,了解竞争对手的动态,分析未来趋势。
5.数据分析培训
目的:整体提升
随着企业的发展,数据的工作如果全部由信息部门数据部门来承担的话,会产生数据与业务之间的断片,所以最好的办法就是让懂业务的人会分析,懂技术的人能解决问题。所以不难理解为什么会下大功夫来给业务人员开展基础培训。
6.数据工具/产品开发
目的:定制+创新
这个框架很好的树立了数据分析的内容框架,就目前来讲,数据分析还是个比较新兴的行当,行业内并没有多少有经验的从业者,大多都是技术转型或业务转型做的,所以在未来有很大的发展前景。
从上升路径上来讲,一开始有可能只是一个助理分析师,之后独立带项目执行,在业务能力、分析技能上有了相当积累后,成为专家,进行决策或者决策支持,推进业务,指导团队,做到统筹规划的层面,完成从业务到决策的飞跃。这个过程也并非顺理成章,这需要你有过硬的业务分析能力,执行管理能力和业内影响力,不断积累行业经验和沉淀能力。
对于大多数处于职场晋升阶段的数据分析师来讲,直白地讲,就三点:工具要熟悉;业务要懂;沟通要好。而后要有持续学习的能力-擅长模仿,勇于创新。
本网信息来自于互联网,目的在于传递更多信息,并不代表本网赞同其观点。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,并请自行核实相关内容。本站不承担此类作品侵权行为的直接责任及连带责任。如若本网有任何内容侵犯您的权益,请及时联系我们,本站将会在24小时内处理完毕,E-mail:xinmeigg88@163.com
本文链接:http://www.ksxb.net/tnews/5089.html